Installation
以下のコードを実行してください
if(!require(remotes)) install.packages("remotes")
remotes::install_github("Kentaro-Kamada/jisshutools")
library(jisshutools)
Usage
- 2変数のクロス表
# Create a sample data
data <-
data.frame(
x = c(rep('A', 50), rep('B', 50)),
y = c(rep(1:5, 20))
)
# Create a cross table
result <- data |> jisshu_cross(x, y)
# Save the cross table as an excel file
result$save('hoge.xlsx')
- 回帰分析(以下をサポート)
- 線形回帰:
lm
- 2項ロジスティック回帰:
glm
- 多項ロジスティック回帰:
nnet::multinom
- 線形回帰:
data <- tibble::tibble(
x1 = rnorm(100, mean = 0, sd = 1),
x2 = rnorm(100, mean = 0, sd = 1),
y = 0.2 + 0.3*x1 + 0.5*x2 + rnorm(100, mean = 0, sd = 0.1),
y_bin = rbinom(100, 1, plogis(y)),
y_multinom = cut(
y,
breaks = quantile(y, probs = c(0, 0.25, 0.75, 1)),
labels = c('Q1', 'Q2', 'Q3'),
include.lowest = TRUE
)
)
# Create a regression table
# Linear regression
model_lm <- lm(y ~ x1 + x2, data = data)
result_lm <- jisshu_reg(model_lm)
# Logistic regression
model_glm <- glm(y_bin ~ x1 + x2, data = data, family = binomial(link = 'logit'))
result_glm <- jisshu_reg(model_glm)
# Multinomial logistic regression
model_multinom <- nnet::multinom(y_multinom ~ x1 + x2, data = data, model = TRUE)
result_multinom <- jisshu_reg(model_multinom)
# Glance the regression table
result_lm$open()
result_glm$open()
result_multinom$open()
# Save the regression table as an excel file
result_lm$save('hoge_lm.xlsx')
result_glm$save('hoge_glm.xlsx')
result_multinom$save('hoge_multinom.xlsx')